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Abstract

In data mining, the input of most algorithms is a set of n objects and each object

is described by a feature vector. However, in many real database applications,

an object is described by more than one feature vector. In this paper, we

call an object described by more than one feature vector as a matrix-object

and a data set consisting of matrix-objects as a matrix-object data set. We

propose a k-multi-weighted-modes (abbr. k-mw-modes) algorithm for clustering

categorical matrix-object data. In this algorithm, we define the distance between

two categorical matrix-objects and a multi-weighted-modes representation of

cluster prototypes is proposed. We give a heuristic method to choose the locally

optimal multi-weighted-modes in the iteration of the k-mw-modes algorithm.

We validated the effectiveness and benefits of the k-mw-modes algorithm on the

five real data sets from different applications.

Keywords: Categorical data, matrix-object, k-mw-modes algorithm

1. Introduction

In data mining, the input of an algorithm in most cases is a data set X,

also called a table or matrix. The data set consists of n objects {x1, x2, · · · , xn}
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and each object is described by m attributes {A1, A2, · · · , Am} [1]. Most impor-

tantly, each object inX only corresponds with a feature vector (xi1;xi2; · · · ;xim),5

i ∈ {1, 2, · · · , n}. However, in many real applications, a database often contains

multiple tables. There are one-one, one-many or many-many relationships be-

tween two tables. Thus, an object usually corresponds with more than one trans-

actional record. A real database application example from www.taobao.com is

described in Table 1.

Table 1: A real application example from Taobao.

User ID User Sex Age Brand ID Brand Name Visit Date Visited Times

10944750 female 24 13451 WETHERM 06-04 8

21110 SEMIR 06-07 1

25687 JOSINY 05-08 11

25687 JOSINY 05-15 4

25687 JOSINY 05-17 2

25687 JOSINY 06-06 2

25687 JOSINY 06-15 2

25687 JOSINY 07-02 5

25687 JOSINY 07-25 2

25687 JOSINY 08-09 3

25687 JOSINY 08-13 1

8149250 male 29 18805 YEARCON 05-25 1

18805 YEARCON 05-26 4

18805 YEARCON 06-12 1

21110 SEMIR 06-30 1

1832000 female 40 25687 JOSINY 08-14 18

25687 JOSINY 08-15 3

25687 JOSINY 06-26 5

25687 JOSINY 08-11 1

10151 OBERORA 08-03 1

18805 YEARCON 07-26 5

10

There are two parts in Table 1. The left half describes the basic information

2



Page 3 of 34

Acc
ep

te
d 

M
an

us
cr

ip
t

of users and the right one records that each user visited different brands in

different time points, where the attribute V isited T imes represents the visiting-

times of a user on the same day for one brand. We call the left part as a master

table and the right one as a detail table in database. Therefore, two parts in15

Table 1 exist a typical one-many relationship. Data in Table 1 have the following

characteristics.

• Correlation: Data from the master table and the detail table maybe have

some correlations. Users with different sex or age maybe have different

preferences. For example, the female user of 24 years old from Table 120

visited the commodities that are usually used by most female users, such

as JOSINY and WETHERM . However, the female user of 40 years old

visited the commodities used by men or women, maybe because she needs

to take after their families.

• One-many: Each user in the master table corresponds with more than25

one record in the detail table. Moreover, the number of brands visited by

different users is often different in Table 1. For example, the user 10944750

has 11 records while the user 8149250 has 4 records.

• Mixed: In most cases, an object is described by categorical and numerical

attributes together. For example, in the detail table, Brand Name is a30

categorical attribute while Visited Times is a numerical attribute.

• Evolution: Some attribute values will change as time goes on. For ex-

ample, a user visits one brand repeatedly in this month, but the brand

may be not visited by him or her in the next month. In other words, the

change of a user’s behaviour is a dynamic evolution process with time.35

From the detail table, we can see clearly that every user visited one brand

at least and a brand may be browsed by many users. Besides, a brand may be

visited several times by a user in a day. Of course, it may also be visited many

times by a user in several days. Obviously, if a user visited many times about

a brand, he or she may be interested in this commodity. For example, for the40

3
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user 10944750, the JOSINY is visited in continuous four months, and there

are several visiting times in every month. So, we can predict the user is likely

very fond of the JOSINY . However, the SEMIR is visited only once by the

user 10944750 in this data set, by which we know that the user may have less

like about it compared with the JOSINY . Such a data representation shown45

in Table 1 is widespread in banking, insurance, telecommunication, retails, and

medical databases. Therefore, it is necessary to develop a method that can

discover user groups with different behaviour patterns from the detail table

instead of the master table. Because the behaviour analysis can help managers

obtain more valuable information for decision making.50

Clustering is a widely used method to find different user groups in real ap-

plications [2] and the master table tends to be taken as its input. But the infor-

mation in the master table cannot enough reflect the behaviour characteristics

of a user. More importantly, in traditional clustering algorithms, the dissimilar-

ity measure between two objects is based on the value difference of two feature55

vectors. For the detail table, each user has more than one transactional record.

In other words, each user is described by multiple feature vectors. Therefore,

some classical dissimilarity measures, such as Euclidean distance, Manhattan

distance and Hamming distance, cannot be used to process this kind of data

directly.60

In the detail table, each user has multiple feature vectors, each of which is

described by numerical and categorical attributes together in most cases. How

to define a dissimilarity measure between two users is a very crucial problem,

because it has direct effects on clustering results. For simplicity, in this paper, we

only investigate the clustering algorithm for the detail table whose each record65

is described by categorical attributes. The k-modes algorithm [3] has realized

the clustering of the categorical data sets compared with the k-means algorithm

[4], but it still has some shortcomings. Only the data sets whose each object

only contains one record can be clustered by the k-modes algorithm. Obviously,

if the problem above wants to be solved with the k-modes algorithm, the data70

sets need to be compressed as the form that the algorithm required by selecting

4
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an attribute value whose frequency is the highest. Thus, lots of information is

at a loss in the data so that the clustering results are unfaithful.

Without loss of generality, a general description of detail information in

Table 1 is illustrated as follows. Suppose that X = {X1, X2, · · · , Xn} is a75

set of n objects described by m attributes {A1, A2, · · · , Am}, where Xi =

(Xi1;Xi2; · · · ;Xim) and Xis = [vi1s, vi2s, · · · , viris]′.
ri represents the number of records in Xi and vijs denotes the jth value of

Xi on As. We call Xi as a matrix-object and X as a matrix-object data set.

Suppose that V s represents the domain values of the attribute As in X and V As

Xi
80

denotes a set of values on the attribute As for Xi. Obviously,
n⋃

i=1

V As

Xi
= V s. In

traditional data representation, an object is only described by a feature vector

or a record while a matrix-object is usually represented by multiple feature

vectors or records. Therefore, a matrix-object is a general representation of a

traditional object.85

In this paper, we propose a new clustering algorithm, the k-mw-modes al-

gorithm, to cluster categorical matrix-object data. The main contributions are

summarized as follows:

• We define a new dissimilarity measure to calculate the distance between

two categorical matrix-objects.90

• We give a new representation and update way of the cluster centers to

optimize the clustering process.

• We give a heuristic method to choose the cluster center of a set.

• We propose the k-mw-modes clustering algorithm to cluster categorical

matrix-object data.95

• Experimental results on the real data sets have shown the effectiveness of

the k-mw-modes algorithm.

The rest of this paper is organized as follows. In Section 2, we propose

the k-mw-modes algorithm. In section 3, we give a heuristic method to choose

5
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the locally optimal multi-weighted-modes for the k-mw-modes algorithm. In100

Section 4, we show experimental results on the five real data sets from different

applications. In Section 5, we review some related work. We give conclusions

and future work in Section 6.

2. k-multi-weighted-modes clustering

The k-modes clustering algorithm consists of three components: (1) rep-105

resentation of cluster centroids, (2) allocation of objects into clusters and (3)

updates of cluster centroids. In this section, we present the k-mw-modes al-

gorithm that uses the k-modes clustering process to cluster categorical matrix-

object data. In this algorithm, we define a dissimilarity measure to calculate

the distance between two matrix-objects and give a kind of representation and110

update way of cluster centers.

2.1. Distance between two matrix-objects

Given two matrix-objects Xi and Xj , which are described by m categorical

attributes {A1, A2, · · · , Am}, the dissimilarity measure between Xi and Xj is

defined as115

d(Xi, Xj) =
1

2

m∑

s=1

δ(Xis, Xjs) (1)

where

δ(Xis, Xjs) =
∑

v∈V As
Xi

⋃
V As
Xj

∣
∣
∣
∣
∣

∑ri
p=1 f(v, vips)

ri
−

∑rj
q=1 f(v, vjqs)

rj

∣
∣
∣
∣
∣

(2)

and

f(x, y) =

⎧
⎨

⎩

1, if x == y.

0, otherwise.
(3)

Here, f(·, ·) is a function whose value is 1 if two parameter values are equal,

otherwise its value is 0. | · | represents the absolute value of a value.

In addition, as 0 ≤ δ(Xis, Xjs) ≤ 2, we add a normalization factor 1
2 in120

Eq.(1). We have δ(Xis, Xjs) = 2 when V As

Xi

⋂
V As

Xj
= ∅.

6
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We can prove that the dissimilarity measure d(Xi, Xj) is a distance metric

satisfying three properties as follows.

1) Nonnegativity: d(Xi, Xj) ≥ 0 and d(Xi, Xi) = 0;

2) Symmetry: d(Xi, Xj) = d(Xj , Xi);125

3) Triangle inequality: d(Xi, Xj) + d(Xj , Xk) ≥ d(Xi, Xk).

Obviously, we can easily prove the first two properties because | · | is the

symbol of an absolute value. The triangle inequality as the third property is

verified as follows.

Proof 1. To prove the inequality d(Xi, Xj) + d(Xj , Xk) ≥ d(Xi, Xk), we only

need to demonstrate

δ(Xis, Xjs) + δ(Xjs, Xks) ≥ δ(Xis, Xks), s ∈ {1, 2, · · · ,m}.

With Eq.(2), the inequality above can be rewritten as

∑
v∈V As

Xi

⋃
V As
Xj

∣
∣
∣
∣

∑ri
p=1 f(v,vips)

ri
−

∑rj
q=1 f(v,vjqs)

rj

∣
∣
∣
∣+

∑
v∈V As

Xj

⋃
V As
Xk

∣
∣
∣
∣

∑rj
q=1 f(v,vjqs)

rj
−

∑rk
l=1 f(v,vkls)

rk

∣
∣
∣
∣

=
∑

v∈V As
Xi

⋃
V As
Xj

⋃
V As
Xk

∣
∣
∣
∣
∣
∣
∣

ri∑

p=1
f(v,vips)

ri
−

rj∑

q=1
f(v,vjqs)

rj

∣
∣
∣
∣
∣
∣
∣

+
∑

v∈V As
Xi

⋃
V As
Xj

⋃
V As
Xk

∣
∣
∣
∣
∣
∣
∣

rj∑

q=1
f(v,vjqs)

rj
−

rk∑

l=1

f(v,vkls)

rk

∣
∣
∣
∣
∣
∣
∣

=
∑

v∈V As
Xi

⋃
V As
Xj

⋃
V As
Xk

(∣
∣
∣
∣

∑ri
p=1 f(v,vips)

ri
−

∑rj
q=1 f(v,vjqs)

rj

∣
∣
∣
∣+

∣
∣
∣
∣

∑rj
q=1 f(v,vjqs)

rj
−

∑rk
l=1 f(v,vkls)

rk

∣
∣
∣
∣

)

≥ ∑
v∈V As

Xi

⋃
V As
Xj

⋃
V As
Xk

∣
∣
∣
∣

∑ri
p=1 f(v,vips)

ri
−

∑rj
q=1 f(v,vjqs)

rj
+

∑rj
q=1 f(v,vjqs)

rj
−

∑rk
l=1 f(v,vkls)

rk

∣
∣
∣
∣

=
∑

v∈V As
Xi

⋃
V As
Xj

⋃
V As
Xk

∣
∣
∣
∑ri

p=1 f(v,vips)

ri
−

∑rk
l=1 f(v,vkls)

rk

∣
∣
∣

=
∑

v∈V As
Xi

⋃
V As
Xk

∣
∣
∣
∑ri

p=1 f(v,vips)

ri
−

∑rk
l=1 f(v,vkls)

rk

∣
∣
∣ .

The above proof verifies that the triangle inequality property holds on one130

attribute. It naturally can be generalized to multiple attributes. It follows

that we have d(Xi, Xj) + d(Xj , Xk) ≥ d(Xi, Xk). Therefore, the dissimilarity

measure d(·, ·) is a distance metric.

Next, we give an example of calculating the distance between two matrix-

objects as follows.135

Example 1. Given two matrix-objects described by two categorical attributes

whose values are represented by integers. The details are illustrated in Table 2.

7
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Table 2: An example of two matrix-objects.

ID A1 A2

X1 2 4

2 5

3 4

4 4

4 2

X2 2 4

4 2

5 2

5 1

According to Eq.(1), the distance between X1 and X2 on the attribute A1

can be computed as | 25 − 1
4 | + | 15 − 0

4 | + | 25 − 1
4 | + | 05 − 2

4 | = 1. Similarly, the

dissimilarity measure is 11
10 on the attribute A2. Therefore we have d(X1, X2) =140

(1 + 11
10 )/2 = 21

20 .

The dissimilarity measure d(·, ·) is also a generalization of the simple match-

ing dissimilarity measure that is used in the k-modes algorithm. In other words,

if two matrix-objects have only one record respectively, their distance can be

calculated by Eq.(1) as well. For instance, suppose that there are two ob-145

jects X1, X2 described by four attributes A1, A2, A3, A4, X1 = (a; c; d; c),

X2 = (a; d; d; b). The distance between them by Eq.(1) is (|1−1|+(|1−0|+ |0−
1|)+ |1− 1|+(|1− 0|+ |0− 1|))/2 = 2, and in the simple matching dissimilarity

measure, it is 0 + 1 + 0 + 1 = 2. So, the dissimilarity measure in the k-modes

algorithm is a special case of d(·, ·).150

With Eq.(1), we design an algorithm to calculate the distance between two

matrix-objects. The details are described in Algorithm 1, which is named ACDM

(an Algorithm of Calculating Distance between Matrix-objects).

2.2. Multi-weighted-modes as cluster centers

Suppose that X is a matrix-object data set described by m categorical at-155

tributes, the cluster center of X is defined as follows.

8
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Algorithm 1 The ACDM.

1: Input: - Xi, Xj : two matrix-objects described by m attributes;

2: Output: - distance: the distance between Xi and Xj ;

3: Method:

4: distance = 0;

5: for s = 1 to m do

6: Obtain Xis = [vi1s, vi2s, · · · , viris]′ and Xjs = [vj1s, vj2s, · · · , vjrjs]′;
7: V = V As

Xi

⋃
V As

Xj
= {vs1, vs2, · · · , vsu};

8: sum = 0;

9: for t = 1 to u do

10: s1 = 0, s2 = 0;

11: for p = 1 to ri do

12: if vst == vips then

13: s1 = s1 + 1;

14: end if

15: end for

16: for q = 1 to rj do

17: if vst == vjqs then

18: s2 = s2 + 1;

19: end if

20: end for

21: sum = sum+ |s1/ri − s2/rj |;
22: end for

23: distance = distance+ sum/2;

24: end for

25: return distance;

Definition 1. Let V As

Xi
= {vs1, vs2, · · · , vsu′

s
} be the domain values of Xi on the

attribute As, the frequency of vsu(1 ≤ u ≤ u′
s) in Xi is defined as

f ′
i(v

s
u) =

ri∑

p=1

f(vsu, vips), (4)

9
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With Eq.(4), we can easily obtain the frequency of each attribute value in160

Xi on As. Thus, Xis can be represented as Xis = {(vsu, f ′
i(v

s
u))|vsu ∈ V As

Xi
} or

Xis = {(vsu, f ′
i(v

s
u)

ri
)|vsu ∈ V As

Xi
}. We call

f ′
i(v

s
u)

ri
as the weight of vsu in Xi.

Definition 2. Let X = {X1, X2, · · · , Xn} be a set containing n matrix-objects

and Q = (QA1
;QA2

; · · · ;QAm
) be a matrix-object. They are all described by

m categorical attributes. Q is the multi-weight-modes or the center of X if Q165

minimizes the following function

F (X, Q) =

n∑

i=1

d(Xi, Q), (5)

where Xi ∈ X and d(Xi, Q) can be calculated by Eq.(1).

To minimize F (X, Q), we only need to minimize
∑n

i=1 δ(Xis, QAs
), the sum

of the distance between Q and each matrix-objects in X on the attribute As

where s ∈ {1, 2, · · · ,m}. As the attribute values in QAs
must be from the values170

in V s that represents the domain values of X on As, the number of categorical

values in QAs
is between 1 and |V s|. According to Definition 1, we can compute

∑n
i=1(f

′
i(v))(v ∈ V s) in X. If we choose us values {vs1, vs2, · · · , vsus

} from V s

as the values of QAs
, there are Cus

|V s| combinations. For a given combination,

its component is represented by (vsj ,
∑n

i=1(f
′
i(v

s
j ))) where j ∈ {1, 2, · · · , us}. It175

follows that the total number of possible sets for QAs
is

∑|V s|
us=1 C

us

|V s|. There-

fore, we need to traverse every combination to find a QAs
, which minimizes

∑n
i=1 δ(Xis, QAs

). A global optimization algorithm for finding multi-weighted-

modes is described in Algorithm 2, which is named GAFMWM (A Global Al-

gorithm of Finding Multi-Weighted-modes).180

2.3. The k-mw-modes algorithm

Given Eq.(1) as the distance measure between two matrix-objects, the k-

mw-modes algorithm for clustering a matrix-object set X = {X1, X2, · · · , Xn}

10
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Algorithm 2 The GAFMWM.

1: Input: - X: A set of n matrix-objects described by m attributes;

2: Output: - Q : The cluster center of X;

3: Method:

4: Q = ∅;
5: for s = 1 to m do

6: Generate a set qs = {q1s , q2s , · · · , q2
|V s|−1

s } in V s by binomial theorem;

7: for j = 1 to 2|V
s| − 1 do

8: Qj
As

= ∅;
9: for p = 1 to |qjs| do

10: Qj
As

= Qj
As

⋃{(vsp,
∑n

i=1 f
′
i(v

s
p))|vsp ∈ qjs};

11: end for

12: Computer Fj =
∑n

i=1 δ(Xis, Q
j
As

) by Eq.(2);

13: if j = 1 then

14: set minValue = Fj , QAs
= Qj

As
;

15: else if Fj < minV alue then

16: set minValue = Fj , QAs
= Qj

As
;

17: end if

18: end for

19: set Q = Q
⋃

QAs
;

20: end for

21: return Q;

into k(� n) clusters minimizes the following objective function

F ′(W,Q) =
k∑

l=1

n∑

i=1

ωlid(Xi, Ql),

subject to

ωli ∈ {0, 1}, 1 ≤ l ≤ k, 1 ≤ i ≤ n, (6)

k∑

l=1

ωli = 1, 1 ≤ i ≤ n, (7)

11
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0 <

n∑

i=1

ωli < n, 1 ≤ l ≤ k, (8)

where W = [ωli] is a k-by-n {0, 1} matrix in which ωli = 1 indicates that185

object Xi is allocated to cluster l, Q = [Q1, Q2, · · · , Qk] in which Ql ∈ Q is the

multi-weighted modes of cluster l.

F ′(W,Q) can be solved with an iterative process to solve two subproblems

iteratively until the process converges. The first step is to fix Q = Qt at iter-

ation t and solve the reduced problem F ′(W,Qt) with Eq.(1) to find W t that190

minimizes F ′(W,Qt). The second step is to fix W t and solve the reduced prob-

lem F ′(W t, Q) by using algorithm GAFMWM to find Qt+1 that minimizes

F ′(W t, Q). We give the description of the algorithm in Algorithm 3, which is

named as the k-mw-modes algorithm.

The computation complexity of the k-mw-modes algorithm is analyzed as195

follows.

• The computation complexity for calculation of the distance between two

matrix-objects on As is O(|V s|). The computation complexity of the

distance between two matrix-objects in m attributes is O(m×|V ′|), where
|V ′| = max{|V s|, 1 ≤ s ≤ m}.200

• Updating cluster centers. The main goal of updating cluster centers is to

find the multi-weighted-modes in each cluster according to the partition

matrix W . The computational complexity for this step is O(km× 2|V
′|),

where |V ′| = max{|V s|, 1 ≤ s ≤ m}.

If the clustering process needs t iterations to converge, the total compu-205

tational complexity of the k-mw-modes algorithm is O(nmtk × 2|V
′|), where

|V ′| = max{|V s|, 1 ≤ s ≤ m}. It is obviously that the time complexity of

the proposed algorithm increases linearly as the number of objects and clus-

ters increases, and increases exponentially with the increasing of the number

of attribute values. The space complexity of the k-mw-modes algorithm is210

O((n+ k)
∑m

s=1 |V s|).

12
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Algorithm 3 The k-mw-modes Algorithm.

1: Input:

2: - X: a data set of n matrix-objects described by m attributes;

3: - k: the number of clusters need to be clustered;

4: - ε: A threshold;

5: - idCenters: the id of k initial centers;

6: Output:

7: - cid: the labels of all objects after clustering;

8: - num: the iterations;

9: Method:

10: Let Q store the k initial centers by the indexes in idCenters;

11: value=0, num=0;

12: while num ≤ 100 do

13: newvalue=0;

14: for i = 1 to n do

15: for j = 1 to k do

16: Calculate the distance between ith object and jth clustering center

by Eq.(1);

17: end for

18: Arrange the ith object to the lth cluster if l = argminkj=1{d(Xi, Qj)}.
19: newvalue=newvalue+minkj=1{d(Xi, Qj)};
20: end for

21: If |newvalue − value| ≤ ε, break; Else value = newvalue and num =

num+ 1;

22: for i = 1 to k do

23: Update the cluster centers Q with Algorithm 2;

24: end for

25: end while

Theorem 1. The k-mw-modes algorithm converges to a local minimal solution

in a finite number of iterations.
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Proof 2. We note that the number of possible values for the center of a cluster

is N = Πm
s=1

∑|V s|
us=1 C

us

|V s|, where |V s| is the number of unique values on As and215

Cus

|V s| is the number of combinations of choosing us values from a set of |V s|
values. To divide a data set into k clusters, the number of possible partitions

is finite. We can show that each possible partition only occurs once in the

clustering process. Let Wh be a partition at iteration h. We can obtain Qh that

depends on Wh.220

Suppose that Wh1 = Wh2 , where h1 and h2 are two different iterations, i.e.,

h1 �= h2. If Qh1 and Qh2 are obtained from Wh1 and Wh2 , respectively, then

Qh1 = Qh2 since Wh1 = Wh2 . Therefore, we have

F ′(Wh1 , Qh1) = F ′(Wh2 , Qh2).

However, the value of the objective function F ′(·, ·) generated by the k-MW-

modes algorithm is strictly decreasing. h1 and h2 must be two consecutive it-

erations in which the clustering result is no longer change and the clustering

process converges. Therefore, the k-mw-modes algorithm converges in a finite

number of iterations.225

3. A heuristic method for updating cluster centers

The GAFMWM for finding cluster centers is not efficient if the number

of domain values is very large. In this section, we give a heuristic method of

updating cluster centers in the k-mw-modes clustering process. For Xi, Xj ∈ X,

we have V As

Xi
= V As

Xj
or V As

Xi
�= V As

Xj
on the attribute As. Even if V As

Xi
= V As

Xj
, the230

frequency of the same attribute value may be different in Xi and Xj , because a

value maybe appears more than once in a given matrix-object. The higher the

frequency of a value in a given matrix-object is, the more the possibility of the

value as the cluster center is. In order to describe the possibility of a value as

the cluster center, the weight of a value is defined as follows.235

Definition 3. Let V s = {vs1, vs2, · · · , vsu′
s
} be the domain values of X on the

attribute As. For any u ∈ {1, 2, · · · , u′
s}, the weight of vsu in X is defined as
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ω(vsu) =
1

n

n∑

i=1

f ′
i(v

s
u)

ri
. (9)

Obviously, we can obtain the weight of each value in V s with Eq.(9) and

arrange them in the descending order of the weight. Suppose that V s =240

{vsq1 , vsq2 , · · · , vsqu′
s

} and ω(vsq1) ≥ ω(vsq2) ≥ · · · ≥ ω(vsqu′
s

). According to Def-

inition 1, we have
∑n

i=1 f
′
i(v

s
q1),

∑n
i=1 f

′
i(v

s
q2), · · · ,

∑n
i=1 f

′
i(v

s
qu′

s

). If there are

us(1 ≤ us ≤ u′
s) values in QAs

, QAs
= {(vsj ,

∑n
i=1 f

′
i(v

s
j ))|q1 ≤ j ≤ qus

}. Here,

in order to increase efficiency, we set us = round(
∑n

i=1 |V As
Xi

|
n ) for QAs

. By the

way above, the centers on other attributes can be found as well. The heuristic245

algorithm is described in Algorithm 4, which is called HAFMWM (A Heuristic

Algorithm of Finding Multi-Weighted-modes).

The time complexity of HAFMWM isO(km|V ′|), where |V ′| = max{|V s|, 1 ≤
s ≤ m}. Obviously, the computation complexity of HAFMWM is less than

GAFMWM.250

Next, we give an example to describe the process of finding cluster centers

by HAFMWM as follows.

Example 2. Suppose that X = {X1, X2, X3, X4} is a set described by one cat-

egorical attribute A1. X1, X2, X3, X4 are matrix-objects and contain five, four,

four and two records, respectively. The details are described in Table 3.

Table 3: An example data set for finding center.

ID A1 ID A1 ID A1 ID A1

X1 3 X2 3 X3 3 X4 3

3 6 5 7

5 4 6

4 3 4

4

255

From Table 3, we can obtain the domain values V 1 = {3, 4, 5, 6, 7} on the

attribute A1. According to the Eqs.(3)-(4) and Eq.(9), the weight of each value

15
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Algorithm 4 The HAFMWM.

1: Input: - X : A set of n matrix-objects described by m attributes;

2: Output: - Q : A cluster center of X;

3: Method:

4: for s = 1 to m do

5: sum=0, QAs
= ∅;

6: for i = 1 to n do

7: sum = sum+ |V As

Xi
|;

8: end for

9: us = round(sum/n);

10: for i = 1 to |V s| do
11: Calculate the weight ω(vsi ) of v

s
i ∈ V s by Eq.(9);

12: end for

13: Arrange {vs1, vs2, · · · , vs|V s|} in the descending order of their weight;

14: for p = 1 to us do

15: Compute
∑n

i=1 f
′
i(v

s
p);

16: QAs
= QAs

⋃{(vsp,
∑n

i=1 f
′
i(v

s
p))};

17: end for

18: Q = Q
⋃

QAs
;

19: end for

20: return Q;

can be calculated as follows:

ω(3) = 1
4 (

f ′
1(3)
r1

+
f ′
2(3)
r2

+
f ′
3(3)
r3

+
f ′
4(3)
r4

)

= 1
4 (

2
5 + 2

4 + 1
4 + 1

2 )

= 1.65
4 ,

In the same way, we have ω(4) = 0.90
4 , ω(5) = 0.45

4 , ω(6) = 0.5
4 , ω(7) = 0.5

4 .

Clearly, ω(3) > ω(4) > ω(6) = ω(7) > ω(5). And u1 = round( 3+3+4+2
4 ) = 3, so

we choose 3, 4, 6 as values ofQA1
. Furthermore, we can compute

∑4
i=1 f

′
i(3) = 6,

∑4
i=1 f

′
i(4) = 4,

∑4
i=1 f

′
i(6) = 2. Therefore, the center of X can be represented

as ((3, 6), (4, 4), (6, 2)).260
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4. Experiments on real data

In this section, we mainly make some experiments on the five real data sets,

Microsoft Web data, Market Basket data, Alibaba data, Musk data and Movie-

lens data, to evaluate the effectiveness of the proposed algorithm. We firstly

describe the preprocessing process of the five data sets. Then five evaluation265

indexes are introduced. Finally, we show the comparison results of the k-mw-

modes algorithm with other algorithms and discuss the impact of the parameter

ε on the clustering performance.

4.1. Data preprocessing

To our best knowledge, open matrix-object data with label information are270

very rare. To tackle this problem, we need to conduct data preprocessing for

the given real data sets, because the data sets clustered by clustering algorithms

are generally supposed to exist some structure or distribution.

To obtain the structure of a given matrix-object data set, we use the mul-

tidimensional scaling technique [5] to visualize the data. The main goal of275

the technique is to obtain a configuration of n points (rows) in P dimensions

(cols) by passing the n-by-n distance matrix obtained by Eq.(1) to the function

mdscale from MATLAB. The Euclidean distances between n points approx-

imate a monotonic transformation of the corresponding dissimilarities in the

n-by-n distance matrix. Therefore, we can visualize n points to reflect the280

distribution of the data. To visualize the data, we set P = 2.

In most cases, the distribution of a real data set is often disordered. By

the visualization technology, we can delete some points to get the relative clear

structure of the data. From the visual figure, we can intuitively find the number

of clusters and obtain the label information of every matrix-object. Thus, we285

can use external evaluation indexes to evaluate the clustering performance of

the k-mw-modes algorithm. Below is the preprocessing process of the five real

data sets.
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4.1.1. Microsoft Web data

Microsoft Web data set downloaded from UCI is created by sampling and290

processing the www.microsoft.com logs. It records the visiting of the web sites in

one week timeframe in February 1998 by 32711 anonymous, randomly-selected

users. For each user, it is described by two attributes, User Id and Web Id, and

more than one web site are visited. So, each user is a matrix-object and the

data set can be used to evaluate the k-mw-modes algorithm.295

The preprocessing process is as follows: firstly eliminate the objects that

visit less than seven web sites to generate a temporary set; secondly visualize

the temporary set in the coordinate system [5] and select the objects whose

abscissa values are in the position of x < −0.1 or x > 0.1 to form a new set of

2401 objects; finally visualize the new set shown in Fig.1.300

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

x

y

Figure 1: The distribution of Microsoft Web data after preprocessing.

Obviously, Microsoft Web data set can be divided into 2 clusters.

4.1.2. Market Basket data

Market Basket data downloaded from Data website1 record the transactions

of 1001 customers, each of which is described by four attributes, Customer Id,

1http://www.datatang.com/datares/go.aspx?dataid=613168

18



Page 19 of 34

Acc
ep

te
d 

M
an

us
cr

ip
t

Time, Product Name and Product Id. Here, we just need to take Customer Id305

and Product Id into account and ignore the other attributes, because all cus-

tomers have the same values on the attribute Time and Product Name can be

replaced completely by Product Id. In addition, the prominent characteristic

for Market Basket data is that every customer in it has 7 transactional records.

Therefore, each customer is a typical matrix-object.310

Following is the process of Market Basket data preprocessing. By visualizing

the data with multidimensional scaling technique, we select some objects who

locate the position of x < −0.2, y < 0.5 or x > 0, y < −0.1 or x > −0.3, y > 0.7

or x > 0.3, y > 0.1 in the coordinate system to form a new data set of 900

objects. The distribution of the new data set is shown in Fig.2.315

−1 −0.5 0 0.5 1 1.5
−1

−0.5

0

0.5

1

1.5

x

y

Figure 2: The distribution of Market Basket data after preprocessing.

It is clearly that Market Basket data can be divided into 3 clusters.

4.1.3. Alibaba data

Alibaba data downloaded from the competition website2 describe user’s be-

haviour of visiting brands. It records 182880 visiting records of 884 users who

are described by four attributes, User Id, Time, Action type and Brand Id. In320

2http://102.alibaba.com/competition/addDiscovery/index.htm
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this experiment, we only consider the attribute User Id and Brand Id. We can

see that Alibaba data set is a matrix-object data set because every user visited

more than one brand.

The preprocessing process of Alibaba data is described as follows: firstly

visualize the data in the coordinate system; secondly eliminate the objects whose325

abscissa values are in the range of −0.2 < x < 0.2 or x > 0.2, 0 < y < 0.2 to

obtain a new set of 793 objects; finally visualize the new set in Fig.3.

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5
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1

1.5
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Figure 3: The distribution of Alibaba data after preprocessing.

Clearly, Alibaba data are divided into 3 clusters according to Fig.3.

4.1.4. Musk data

Musk data describe a set of 92 objects, each of which represents a molecule330

and is described by 167 attributes. This data set can be downloaded from UCI

[6] and aims at predicting whether new molecules will be musks or non-musks.

The fact that 476 instances or records are contained in Musk data results in

more than one record for an object. That is to say, Musk data set is a matrix-

object data set. Furthermore, it has been divided into 2 clusters by the human335

experts that the 47 molecules are judged to be musks while the remaining 45

molecules are non-musks. In this experiment, we consider attribute values on

Musk data as categorical values. Therefore, we can cluster Musk data directly
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without preprocessing.

4.1.5. MovieLens data340

MovieLens data are collected and made from the MovieLens website3 and

they contain three different size parts, MovieLens 100k, MovieLens 1M and

MovieLens 10M. In this experiment, we make some experiments on the Movie-

Lens 1M data, which contain three files including movies data, ratings data and

users data. Movies data and users data are not considered because they only345

describe the fundamental information of movies and users respectively.

In this experiment we only employ the ratings data set which records 1000209

ratings of 3900 movies made by 6040 users selected randomly. And it is described

by four attributes, UserID, MovieID, Rating and Timestamp. The attribute

Timestamp has a different value for every record. We delete the attribute be-350

cause it has almost no effects on clustering results.

The preprocessing process is described as follows: select objects that are in

the range of x < −0.2, y > 0.4 or x > 0.2, y > 0.4 or x < −0.2, y < −0.5 or

x > 0.2, y < −0.3 in the coordinate system as a new set after the visualization

of the initial data set; then visualize the new data in Fig.4.355
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Figure 4: The distribution of MovieLens data after preprocssing.

3http://grouplens.org/datasets/movielens/
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Apparently, the data seen from Fig.4 are divided into 4 clusters.

The final data sets after preprocessing are listed in Table 4. These data sets

are used to evaluate the k-mw-modes algorithm.

Table 4: Data sets after preprocessing.

Data set Matrix-objects Attributes Records k

Web 2401 2 22250 2

Basket 900 2 6300 3

Alibaba 793 2 165655 3

Musk 92 167 476 2

Movie 4592 3 728487 4

4.2. Evaluation indexes

To evaluate the effectiveness of the k-mw-modes clustering algorithm, we360

used the following five external criterions: (1) adjusted rand index (ARI) [7],

(2) normalized mutual information (NMI) [8], (3) accuracy (AC), (4) precision

(PE) and (5) recall (RE) to measure the similarity between two partitions of

objects in a given data set.

Let X be a matrix-object data set, C = {C1, C2, · · · , C ′
k} be a clustering365

result of X, P = {P1, P2, · · · , Pk} be a real partition in X. The overlap between

C and P can be summarized in a contingency table shown in Table 5, where nij

denotes the number of objects in common between Pi and Cj , nij = |Pi

⋂
Cj |.

pi and cj are the number of objects in Pi and Cj , respectively.

The five evaluation indexes are defined as follows:370

ARI =

∑
ij C

2
nij

− [
∑

i C
2
pi

∑
j C

2
cj ]/C

2
n

1
2 [
∑

i C
2
pi

+
∑

j C
2
cj ]− [

∑
i C

2
pi

∑
j C

2
cj ]/C

2
n

,

NMI =

∑k
i=1

∑k′

j=1 nij log(
nijn
picj

)
√∑k

i=1 pilog(
pi

n )
∑k′

j=1 cj log(
cj
n )

,
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Table 5: The contingency table.

C1 C2 ..... · · · Ck′ Sums

P1 n11 n12 · · · n1k′ p1

P2 n21 n22 · · · n2k′ p2
...

...
...

. . .
...

...

Pk nk1 nk2 · · · nkk′ pk

Sums c1 c2 · · · ck′ n

AC =
1

n
max

j1j2···jk∈S

k∑

i=1

niji ,

PE =
1

k

k∑

i=1

nij∗i
pi

,

RE =
1

k′

k′
∑

i=1

nij∗i
ci

,

where n1j∗1 + n2j∗2 + · · · + nkj∗k = max
j1j2···jk∈S

∑k
i=1 niji (j∗1j

∗
2 · · · j∗k ∈ S) and

S = {j1j2 · · · jk : j1, j2, · · · , jk ∈ {1, 2, · · · , k}, ji �= jt for i �= t } is a set of all

permutations of 1, 2, · · · , k. For AC,PE,RE, k is equal to k′ in general case.

In addition, we consider that the higher the values of ARI, NMI, AC, PE and

RE are, the better the clustering solution is.375

4.3. Comparisons of two cluster center update algorithms GAFMWM and HAFMWM

In this section, we show comparison results of two cluster center update

algorithms GAFMWM and HAFMWM used in the k-mw-modes algorithm. As

the k-mw-modes algorithm that is the extension of the k-modes algorithm is

sensitive to the initial cluster centers, we executed the k-mw-modes algorithm380

with two cluster center update algorithms 10 times, respectively. And all of our

experiments were conducted on a PC with an Intel Xeon CPU I7(3.4GHz) and

16GB memory. Table 6 shows the average values and standard deviations of

clustering evaluation indexes on Market Basket data set.
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Table 6: Comparison results of the k-mw-modes algorithm with GAFMWM and HAFMWM

on Market Basket data.

AC PE RE ARI NMI

k-mw-modes+GAFMWM 0.9058±0.1176 0.9072±0.1151 0.9004±0.1262 0.8015±0.2215 0.8099±0.2022

k-mw-modes+HAFMWM 0.8834±0.1370 0.8906±0.1385 0.8726±0.1483 0.7383±0.2419 0.7180±0.2162

In addition, we compared the execution time of the k-mw-modes algorithm385

with two update methods and the experimental results are shown in Table 7.

Table 7: Run-time of the k-mw-modes algorithm with GAFMWM and HAFMWM on Market

Basket data.
Run-time (Second)

k-mw-modes +GAFMWM 1.60497×105 ± 0.4731×105

k-mw-modes +HAFMWM 15.6146 ± 4.2214

From Table 6, we can find that the k-mw-modes algorithm with GAFMWM

is better than it with HAFMWM on all evaluation indexes. But we also can see

that the k-mw-modes algorithm with GAFMWM is very time consuming from

Table 7. It took about 45 hours to produce one clustering result on Market390

Basket data, which is not acceptable in real applications. However, the k-

mw-modes algorithm with HAFMWM only took a few seconds to produce a

clustering result on the same data set. HAFMWM compared with GAFMWM

speeds up the k-mw-modes process tremendously. Furthermore, the values of

evaluation indexes of both algorithms are closer. Therefore, we will use the395

k-mw-modes algorithm with HAFMWM instead of GAFMWM in the following

experiments.

4.4. Comparisons of the k-mw-modes with other algorithms

As far as we know, no appropriate algorithms can be used to directly clus-

ter the categorical matrix-object data. To cluster the data by some existed400

algorithms, we have to convert the representation of matrix-objects.
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If we use a feature vector to represent a matrix-object, the matrix-object

data can be clustered by k-modes-type algorithms. We choose the attribute

value with maximal frequency as a representative on each attribute for each

matrix-object. Then, each matrix-object is simplified a feature vector. In this405

subsection, we compared the k-mw-modes with the k-modes, the Wk-modes

[16], the k-modes with the new dissimilarity measure (abbr. k-modes-cao) [10].

If we regard all categories to be independent, the matrix-object data can be

identified with co-occurrence information data among objects and categories.

Thus, some co-clustering algorithms [20, 21, 22] can be used to cluster the410

matrix-object data. For a given matrix-object data set, we count the number of

each attribute value in each object to transform each object into a p-dimensional

feature vector (p =
∑m

s=1 |V s|). In this subsection, we compared the k-mw-

modes with FCCM that is one of co-clustering methods [20].

In this experiment, we clustered every data set 50 times respectively by the415

these algorithms and ε was set to 0.1 in the k-mw-modes algorithm. In the

FCCM, we set Tu = 0.1, Tw = 1.5 and ε = 0.0001 [20]. The results of the five

data sets are listed in Tables 8-12, respectively.

Table 8: Comparison results of the five algorithms on Microsoft Web data.

Algorithms AC PE RE ARI NMI

k-modes 0.6117±0.0608 0.6101±0.0598 0.5827±0.0802 0.0592±0.0613 0.0414±0.0432

Wk-modes 0.6284±0.0742 0.7158±0.0615 0.6009±0.1002 0.0806±0.0876 0.0852±0.0786

k-modes-cao 0.6504±0.0653 0.6521±0.0690 0.6357±0.0789 0.1048±0.0835 0.0790±0.0654

FCCM

k-MW-modes 0.9220±0.0940 0.9288±0.0962 0.9148±0.1013 0.7463±0.1918 0.6806±0.1745

The left of the symbol “±” in these tables represents the means of exter-

nal criterion values for 50 experiments and the right of it represents standard420

deviations. From the five tables, we can find that the means on AC, PE, RE,

ARI, NMI in the k-mw-modes algorithm are generally higher than that in the

k-modes, the Wk-modes and the k-modes-cao algorithms. What’s more, the

k-mw-modes algorithm on the index AC is approximately 10%˜30% more than
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Table 9: Comparison results of the five algorithms on Market Basket data.

Algorithms AC PE RE ARI NMI

k-modes 0.4939±0.0670 0.4967±0.0723 0.4865±0.0883 0.0836±0.0564 0.0821±0.0535

Wk-modes 0.5213±0.0643 0.6375±0.0815 0.5240±0.1004 0.1095±0.0615 0.1620±0.0638

k-modes-cao 0.5478±0.0605 0.5806±0.0763 0.5449±0.0738 0.1373±0.0520 0.1517±0.0529

FCCM 0.5405±0.0211 0.5629±0.0458 0.6711±0.1167 0.1522±0.0205 0.1690±0.0233

k-MW-modes 0.8834±0.1370 0.8906±0.1385 0.8726±0.1483 0.7383±0.2419 0.7180±0.2162

Table 10: Comparison results of the five algorithms on Alibaba data.

Algorithms AC PE RE ARI NMI

k-modes 0.4817±0.0000 0.4817±0.0012 0.3333±0.0000 0.0000±0.0020 0.0022±0.0015

Wk-modes 0.4832±0.0011 0.7796±0.0821 0.3353±0.0015 -0.0012±0.0040 0.0217±0.0085

k-modes-cao 0.4817±0.0000 0.4805±0.0024 0.3333±0.0000 0.0036±0.0040 0.0049±0.0030

FCCM

k-MW-modes 0.6528±0.0459 0.6217±0.0564 0.5840±0.0525 0.2866±0.0732 0.2245±0.0610

Table 11: Comparison results of the five algorithms on Musk data.

Algorithms AC PE RE ARI NMI

k-modes 0.5567±0.0382 0.5639±0.0434 0.5547±0.0398 0.0089±0.0239 0.0155±0.0192

Wk-modes 0.5159±0.0070 0.6141±0.0988 0.5070±0.0107 -0.0010±0.0014 0.0182±0.0231

k-modes-cao 0.5387±0.0259 0.5402±0.0278 0.5361±0.0295 -0.0021±0.0111 0.0067±0.0086

FCCM 0.5846±0.0285 0.5976±0.0398 0.5820±0.0272 0.0224±0.0206 0.0285±0.0200

k-MW-modes 0.5600±0.0413 0.5688±0.0487 0.5565±0.0423 0.0116±0.0276 0.0183±0.0243

Table 12: Comparison results of the five algorithms on MovieLens data.

Algorithms AC PE RE ARI NMI

k-modes 0.4885±0.1206 0.5191±0.1508 0.4864±0.1194 0.1997±0.1205 0.2360±0.1416

Wk-modes 0.5267±0.1220 0.6147±0.1235 0.5351±0.1248 0.2617±0.1231 0.3251±0.1474

k-modes-cao 0.4348±0.0809 0.4266±0.0733 0.4311±0.0794 0.1301±0.0809 0.1261±0.0754

FCCM

k-MW-modes 0.6244±0.0303 0.6851±0.0297 0.6233±0.0321 0.3211±0.0424 0.3904±0.0367

those algorithms on it except for Musk data. We can also see that the AC in425

the Wk-modes and k-modes-cao algorithms is generally higher than it in the

26



Page 27 of 34

Acc
ep

te
d 

M
an

us
cr

ip
t

k-modes algorithm.

For the FCCM, its accuracy on Musk data is higher than that of the proposed

algorithm, but it has not clustering results on Alibaba data and MovieLens data.

The reason is that we cannot compute the memberships of attribute values for430

each cluster after normalization because some attribute values have a fairly

high frequency in each object and the membership of every attribute value in

a cluster defined in the FCCM increases exponentially as the increasing of the

total frequency of the value in each object. For Microsoft Web data, we only

can obtain a cluster, which is meaningless in real applications. Therefore, the435

FCCM is not suitable for the clustering of this type of data.

In short, it can be seen that the k-mw-modes algorithm is exactly better

than the other four algorithms.

4.5. Impact of ε

In the k-mw-modes algorithm, the parameter ε is used to determine whether440

the algorithm stops or not. How to decide the size of ε is a very difficult problem,

because the clustering results may have some differences when different values

of ε are selected. To analyze the impact of ε on the clustering performance of

the k-mw-modes algorithm, we ran the algorithm 30 times with different values

of ε, from 0.02 to 0.2 with step 0.01, on the five data sets and recorded the445

means of accuracy (AC) and iterations. Results of AC and iterations on the five

data sets are shown in Fig.5 and Fig.6, respectively.

From Fig. 5, we can observe that the AC on Musk, Alibaba and MovienLens

has almost no change and the AC on the other two data has been fluctuating

as the increasing of ε, but overall they are relatively stable. Meanwhile, from450

Fig.6, we can see clearly that the iterations on the five data all show a decreasing

trend on the whole as the increasing of ε. Particularly, for Web and Alibaba,

the iterations decrease rapidly when ε < 0.1 and they decrease slowly relatively

when ε > 0.1. Higher AC and fewer iterations are expected in this algorithm,

so we set ε = 0.1.455
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Figure 5: The AC of the five data with different ε.
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Figure 6: The iterations of the five data with different ε.

5. Related work

In real applications, categorical data are widespread. The k-modes algorithm

[3] extends the k-means algorithm [4] by using a simple matching dissimilarity

measure for categorical objects, modes instead of means for clusters, and a

frequency-based method to update modes in the clustering process to minimize460

the clustering objective function. These extensions have removed the numeric-

only limitation of the k-means algorithm and enable the k-means clustering

process to be used to efficiently cluster large categorical data sets from real
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world [9, 10]. The k-modes clustering algorithm [11, 12] was also proposed

independently. Huang [13] gave the relationship of the two k-modes methods.465

So far, the k-modes algorithm and its variants [14, 15, 16], including the fuzzy

k-modes algorithm [17], the fuzzy k-modes algorithm with fuzzy centroid [18],

the k-prototype algorithm [3] and the w-k-means [19] have been used widely in

many domains. However, these methods can not cluster matrix-object data set

effectively.470

6. Conclusions

In many database applications, the behavioural traits of a customer are car-

ried in a detail table instead of a master table. To find the customer groups

with different behavioural traits, a k-mw-modes algorithm was proposed for clus-

tering categorical matrix-object data. In the proposed algorithm, the distance475

between two matrix-objects was defined and the representation and update ways

of cluster centers were developed further. The convergence of the proposed al-

gorithm was proved and the corresponding time complexity was analyzed as

well. To speed up the clustering process, a heuristic method was proposed to

construct multi-weighted-modes centers in each iteration of the k-mw-modes480

algorithm. Experimental results on the five real data sets have shown that

the k-mw-modes algorithm is better than the k-modes-type algorithms and the

FCCM in clustering categorical matrix-object data.
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(1) We propose a k-multi-weighted-modes (abbr. k-mw-modes) 

algorithm for clustering categorical matrix-object data and the 

k-modes algorithm is its special case. 

(2) We give a heuristic method to choose the locally optimal 

Multi-Weighted-modes in the iteration of the k-mw-modes algorithm 

and the update process of the k-modes algorithm is its special case.  

(3) Experimental results on the five real data sets from different 

applications have shown the effectiveness of the k-mw-modes 

algorithm.  
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